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Introduction

According to the Solvency 2 regulation, insurers need to be able to assess the
capital needs that cover the risk of annual losses due to credit risk. The appli-
cations can be as well for Own Risk and Solvency Assessments as for computing
internal model Solvency Capital Requirements (SCRs). Being able to measure
credit risk is also an important precondition for the asset management of insur-
ers. This paper introduces an original and time-efficient solution to the prob-
lem of linking credit portfolios to credit market indices and of computing credit
SCRs. The solution uses a pricing scheme that decomposes credit spreads into
default probabilities and losses given default, so that takes into account recovery
risk.

It is usually impossible to directly build an aggregate index that perfectly
reflects the risk profile of the credit portfolio of any given investor. Indeed, the
recovery rates of the assets constituting a credit market index are usually quite
homogeneous by construction, whereas investors build up credit portfolios by
selecting assets with varying recovery rates. For instance, investors can select
bonds of low rating and high recovery and bonds of high rating and low recovery,
and such a strategy cannot be directly replicated using existing market credit
indices. An additional difficulty lies in the limited ability of the investor or
the market to determine the recovery rates of credit instruments. However,
to quantify spread risk, we need to start from credit market indices. In this
paper, we use past available index data to construct pseudo-indices that mimic
target credit portfolios in all aspects except recovery risk. These pseudo-indices
constitute an important step toward the reconstruction of market-consistent
credit observations, where a final adjustment for recovery risk is made. Using a
one-year GPD distribution to model the reconstructed credit observations allows
us to achieve a quantization of spread risk and to compute SCRs and similar
indicators.

Crouhy, Galai and Mark (2000) and Bruyère et al (2006) provide broad dis-
cussions on the credit models used by banks. Credit risk can be tackled using
either a structural approach or a reduced form approach, the latter of which
can be intensity-based or not. The structural approach is based on an eco-
nomic model of the corporation. See for instance Leland (1994), Longstaff and
Schwartz (1995) or Collin-Dufresne and Goldstein (2001). The reduced form
approach directly measures default and rating transitions. See for instance El-
liott, Jeanblanc and Yor (2000), Bielecki and Rutkowski (2002), or Schönbucher
(2003). Our paper is based on the reduced form approach constructed in Jarrow,
Lando and Turnbull (1997) and in Israel, Rosenthal and Wei (2001). For general
perspectives on recovery rates, see Bruche and González-Aguado (2010), Schnei-
der, Sögner and Veža (2010), or Schläfer and Uhrig-Homburg (2014). Cohen and
Costanzino (2015a, 2015b) provide a framework for modeling stochastic recov-
ery rates. For a general presentation of the Solvency 2 and Basle regulations,
we refer the reader to Gatzert and Wesker (2011). Gatzert and Martin (2012)
discuss the standard approach versus internal models. Among the references
that concentrate on tail risk, we can cite Meine, Supper and Weiss (2016). Our
Generalized Pareto Distribution approach uses the contribution of Hill (1975)
and Hosking and Wallis (1987).

The paper is organized as follows. In a first section, we introduce the main el-
ements of the pricing approach and we also provide new results on risk-premium
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adjustment factors. In a second section, the paper develops a set of methods
that allow us to extract relevant credit experience. We construct, based on
Merrill Lynch credit indices, a primary pseudo-index that is representative of
all the elements - except recovery - of the risk profile of a given credit port-
folio. Then, we extract values of the risk premium adjustment factor from
the pseudo-index. Then, we recombine this information and the recovery rates
of the constituents of the credit portfolio to reconstruct a synthetic market-
consistent history of the credit portfolio. In the third section of the paper, a
mixed empirical-Generalized Pareto Distribution process is used to model the
one year risk of the credit portfolio. An ample discussion and validation of the
estimation of the model parameters is provided. In the fourth and final sec-
tion, an illustration is conducted where gross Solvency Capital Requirements
are computed and discussed with regard to the rating class and recovery rate.

1 Credit Modeling

We present here the credit risk framework used in this article. For this purpose,
we follow the lines of Jarrow, Lando, and Turnbull (1997).

1.1 Historical Rating Transitions

We start by describing rating transitions in the real world. Denote by κt the
rating of an issuer at time t. Then, the probability of a transition from the
rating κt to the rating κt′ between times t and t′ is written as

P (κt′ = h|κt = k) = ph,k(t, t
′).

Assume that there are K viable states. Next, define the default time τ as
the first time when κt enters into an additional state K+1, which is the default
state. We have:

τ = inf{t ≥ 0 | κt = K + 1},

where K + 1 is an absorbing state.
The set of rating transition probabilities constitutes the transition matrix

over K + 1 possible states, denoted as

TP (t, t′) =











p1,1(t, t
′) . . . p1,K(t, t′) p1,K+1(t, t

′)
...

...
...

pK,1(t, t
′) . . . pK,K(t, t′) pK,K+1(t, t

′)
0 . . . 0 1











,

where the superscript P indicates that the matrix is considered in the real-world.
The sum of the coefficients of TP along each line is equal to 1. The last line

of TP is comprised of zeros and of a final coefficient equal to 1: this corresponds
to the fact that K + 1 is an absorbing state.

We typically assume that κ is a time-homogeneous Markov chain in discrete
time, so that TP (m,n) = TP (m+ l, n+ l) when m, n, and l are integers. Then,
note that we have the following master equation between times 0 and 2:

ph,k(0, 2) =

K+1
∑

i=1

ph,i(0, 1)× pi,k(1, 2),
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or, in matrix terms,
TP (0, 2) = TP (0, 1)TP (1, 2),

or, assuming time-homogeneity,

TP (0, 2) = TP (0, 1)2.

By extension, we have, for all N :

TP (0, N) = TP (0, 1)N ,

which gives

TP (0, t) = TP

(

0,
t

N

)N

or

TP (0, t) =

(

1 +
N
(

TP
(

0, t
N

)

− 1
)

N

)N

.

Asymptotically, we write:

TP (0, t) = eΛ
P t =

+∞
∑

i=0

(

tΛP
)i

i!
,

where ΛP is called the generating matrix or generator. The sum of coefficients
along each line of this matrix is null and all the coefficients of its last line are
null.

Assume that the generator is diagonalizable, so that

ΛP = XDX−1,

where D is a diagonal matrix and X is an invertible matrix whose columns are
the eigenvectors of ΛP . Then, for all i,

(

ΛP
)i

= XDiX−1

yields

TP (0, t) =

+∞
∑

i=0

X
(tD)

i

i!
X−1

and
TP (0, t) = XetDX−1.

which gives a direct way of computing TP knowing ΛP . The converse operation
can be achieved using the formulas in Jarrow, Lando, and Turnbull (1997)):















ΛP
k,k = ln

(

TP
k,k(0, 1)

)

ΛP
h,k = ln

(

TP
k,k(0, 1)

)

TP
h,k(0,1)

TP
k,k

(0,1)−1

,

or the improved formula of Israel, Rosenthal, and Wei (2001):

ΛP = −
1

t

+∞
∑

i=1

(

I − TP (0, t)
)i

i
.
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1.2 Risk-Neutral Rating Transitions and Risk Premium

Adjustment Factors

Let us now come to the study of risk-neutral rating transitions. The probabilities
of these transitions are denoted as follows:

Q(κt′ = h|κt = k) = qh,k(t, t
′),

and we introduce, similar to the historical transition matrix, the risk-neutral
transition matrix:

TQ(t, t′) =











q1,1(t, t
′) . . . q1,K(t, t′) q1,K+1(t, t

′)
...

...
...

qK,1(t, t
′) . . . qK,K(t, t′) qK,K+1(t, t

′)
0 . . . 0 1











.

Whereas it is possible to use a constant generating matrix in the histori-
cal case, it is difficult to maintain consistency between the historical and the
risk-neutral universe and to have a constant risk-neutral generating matrix.
Therefore, we assume in full generality that

TQ(0, t) = e
∫

t

0
ΛQ(s)ds,

where this expression has to be understood in the symbolic sense as the solution
of the following matrix differential equation:

dTQ(0, t)

dt
= TQ(0, t)ΛQ(t).

Several ways to relate historical and risk-neutral transition probabilities ex-
ist. In each approach, a set of risk premium adjustement factors is introduced.
For instance, we can write











qh,k(t, t+ 1) = ψh,k(t) ph,k(t, t+ 1) h 6= k

qk,k(t, t+ 1) = 1−
∑

h 6=k

qh,k(t, t+ 1),

where the factors ψh,k are introduced to relate all the possible historical and
risk-neutral transitions. In a simplified approach, the factors only depend on
the initial rating, yielding the series of equations:











qh,k(t, t+ 1) = ψk(t) ph,k(t, t+ 1) h 6= k

qk,k(t, t+ 1) = 1−
∑

h 6=k

qh,k(t, t+ 1) = 1− ψk(t)
∑

h 6=k

ph,k(t, t+ 1)
,

or, equivalently,






qh,k(t, t+ 1) = ψk(t) ph,k(t, t+ 1) h 6= k

qk,k(t, t+ 1) = 1− ψk(t)(1− pk,k(t, t+ 1))
,

which can be simplified as follows:

TQ(t, t+ 1) = I +Ψ(t)
(

TP (t, t+ 1)− I
)

,
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where Ψ(t) is the diagonal matrix with elements (ψ1(t), . . . , ψK(t), 1).
In a distinct approach, we introduce the risk premium adjustment factor Π

that satisfies
ΛQ(t) = Π(t)ΛP

where Π(t) is the diagonal matrix with elements (π1(t), . . . , πK(t), 1). From this
expression, we obtain:

TQ(0, t) = e
∫

t

0
Π(s)ΛP ds.

A nearly identical approach consists in writing the following approximation:

TQ(0, t) ≈ et Π ΛP

or in applying

TQ(t, t+ 1) ≈ eΠ ΛP

recursively over discrete time steps. This is the approach retained in the next
sections of this article.

Finally, the computation of default probabilities provides an illustration of
a recombination of the above two approaches:

Q(τ < TN |κ0 = k) = qk,K+1(0, TN ) =
[

e
∫ TN
0

Π(s)ΛP ds
]

k,K+1

= ψk,K+1(0, TN ) pk,K+1(0, TN ). (1)

For simplicity of notation, we drop the conditioning in the risk-neutral prob-
ability in the next computations.

1.3 Portfolio Implied Risk Premium Adjustment Factor

We now show how it is possible to extract relations between risk premium
adjustment factors. We consider a portfolio of bonds that pertain to K rating
classes. We assume that there are Mk bonds in each rating class k, so that the
total number of bonds in the portfolio is

∑K

k=1Mk. Although it is possible to
interpret Mk as a number of maturity classes, we do not make this specification
here and we only interpret Mk as a number of bonds of varying characteristics
but common rating k. The total value of the portfolio can be expressed as

V =
K
∑

k=1

Mk
∑

j=1

V j,k,

where V j,k is the value of the jth bond of rating k. Denoting as N j,k the number
of cash-flows of this bond and as Ti a cash-flow payment time, we have:

V j,k =

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

(

Rj,k + (1−Rj,k)(1−Q(τ j,k < Ti))
)

,

where Cj,k
i is a coupon or principal payment at time Ti, R

j,k is the recovery
rate, and τ j,k is the default time of the jth bond of rating k.
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Assuming that all bonds pay coupons over the same discrete set of dates,
but allowing for varying numbers of coupons, we have:

V =

K
∑

k=1

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

(

Rj,k + (1−Rj,k)(1−Q(τ j,k < Ti))
)

,

which can be rewritten as

V =

K
∑

k=1

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

(

Rj,k + (1−Rj,k)(1− ψk,K+1(0, Ti)P (τ
j,k < Ti))

)

,

The value of the portfolio can also be expressed as the sum of two compo-
nents:

V =

K
∑

k=1

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

K
∑

k=1

Mk
∑

j=1

(1−Rj,k)

Nj,k

∑

i=1

Cj,k
i P (0, Ti)ψk,K+1(0, Ti)pk,K+1(0, Ti), (2)

where the first component is the value of a portfolio of otherwise equivalent
credit-risk-free bonds.

Note that V k, which is the value of the subportfolio of bonds of rating k,
can be written as follows:

V k =

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

Mk
∑

j=1

(1−Rj,k)

Nj,k

∑

i=1

Cj,k
i P (0, Ti) ψk,K+1(0, Ti) pk,K+1(0, Ti). (3)

Determination of (π1, . . . , πk)

We assume that Π(t) is time-invariant and is a diagonal matrix with elements
(π1, . . . , πK , 1). From Eq. (1), we can write

[

ediag(π1,...,πK ,1)ΛP t
]

k,K+1
= ψk,K+1(0, t) pk,K+1(0, t),

so that

V k =

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

Mk
∑

j=1

(1−Rj,k)

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

[

ediag(π1,...,πK ,1)ΛPTi

]

k,K+1
. (4)

Therefore, denoting by V̂ k the quoted value of the subportfolio of bonds of
rating k, the parameters (π1, . . . , πK) can be determined by solving the system
of K equations:

{

∀k = 1 : K V̂ k = V k
}

. (5)
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Case of a unique coefficient π

If we introduce the constraint of a unique coefficient π = π1 = · · · = πK , then,
it is not anymore possible to simultaneously solve the K equations (5). The
calibration can be performed by minimizing a distance criterion. For instance,
it is possible to solve:

min
π

K
∑

k=1

∆2
k, (6)

where

∆k = V̂ k −

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

Mk
∑

j=1

(1−Rj,k)
Nj,k

∑

i=1

Cj,k
i P (0, Ti)

[

ediag(π,...,π,1)ΛPTi

]

k,K+1
. (7)

The solution π to Eq. (6) does not allow us to exactly reproduce prices
but only to minimize the quadratic distance between model and empirical bond
prices.

Similarly, it is possible to solve the following program:

min
π

K
∑

k=1

Mk
∑

j=1

∆2
j,k,

where ∆j,k is defined per rating and per maturity class.

The calibration can also be performed by setting V = V̂ where V̂ is the
quoted value of the portfolio. For simplicity, we retain this latter approach in
the remainder of the paper when π is assumed unique.

Computation of a unique equivalent coefficient ψ

Using Eq. (2), we search for the unique risk premium adjustment factor ψ that
does not depend on the rating or the maturity of bonds and that is equivalent
to the set of factors ψk,K+1(0, Ti). We write:

V =

K
∑

k=1

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

K
∑

k=1

Mk
∑

j=1

(1−Rj,k)

Nj,k

∑

i=1

Cj,k
i P (0, Ti) ψ pk,K+1(0, Ti), (8)

which yields

ψ =

K
∑

k=1

Mk
∑

j=1

(1−Rj,k)
Nj,k
∑

i=1

Cj,k
i P (0, Ti) ψk,K+1(0, Ti) pk,K+1(0, Ti)

K
∑

k=1

Mk
∑

j=1

(1−Rj,k)
Nj,k
∑

i=1

Cj,k
i P (0, Ti) pk,K+1(0, Ti)

,

8



or, in a more compact form,

ψ =

K
∑

k=1

Mk
∑

j=1

Nj,k
∑

i=1

wj,k
i ψk,K+1(0, Ti)

K
∑

k=1

Mk
∑

j=1

Nj,k
∑

i=1

wj,k
i

, (9)

where
wj,k

i = (1−Rj,k) Cj,k
i P (0, Ti) P (τ

j,k < Ti).

Note that Eq. (9) can be simplified into

ψ = w

K
∑

k=1

Nj,k

∑

i=1

ψk,K+1(0, Ti),

provided the weights wj,k
i are sufficiently regular. This is only possible under

specific investment conditions: the portfolio manager should select bonds whose
recovery rate evolves in the same direction as their probability of default.

2 Credit Benchmarking

Historical bond portfolio values cannot be directly used for computing Solvency
Capital Requirements. Indeed, the composition of an insurance company’s bond
portfolio may substantially change with the passage of time. In this section, we
examine how it is possible to reconstruct historical databases of benchmarked
credit portfolio values under the constant position paradigm, which assumes
that past portfolio weights have not been modified and are identical to current
portfolio weights. This amounts to reconstructing the history of a virtual port-
folio that has never been rebalanced and whose weights are the current portfolio
weights. The historical values obtained in this section will be subsequently used
for computing credit SCRs.

We introduce three approaches for constructing historical portfolio values.
The first approach uses a global index, the second approach decomposes the
credit portfolio into a sub-portfolio of bonds with full recovery and a sub-
portfolio of remaining bonds, and the third approach, which is the most precise
of the three, reconstructs historical values for subportfolios of identical notation
before producing an aggregate indicator.

In each of these approaches, the determination of the risk premium adjust-
ment factor Π is a key step. In the first two approaches, a unique constant
factor π is assumed, while in the third approach we use a vector (π1, . . . , πk) of
factors that are constant by notation.

Examples of credit indexes that can be used for benchmarking are the Merrill
Lynch monthly indexes that reflect the performance of corporate bonds of the
Euro zone. These indexes are comprised of sub-indexes computed by rating
and by maturity. In order to neutralize credit-risk-free interest rate movements,
we subtract from these corporate indexes another Merrill Lynch index that
accounts for Government bond movements. Let us now describe our three credit
benchmarking approaches.
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All the computations of this section use the valuation formula:

V =

K
∑

k=1

Mk
∑

j=1

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

−

K
∑

k=1

Mk
∑

j=1

(1−Rj,k)

Nj,k

∑

i=1

Cj,k
i P (0, Ti)

[

ediag(π1,...,πK ,1)ΛPTi

]

k,K+1
, (10)

which is obtained by summing up the contributions in Eq. (4). In approaches
1 and 2, diag(π1, . . . , πK , 1) is simply diag(π, . . . , π, 1).

2.1 First Approach

We present a first approach for recomputing the historical values of a credit
portfolio in the constant position paradigm. As an intermediate step, we con-
struct a credit pseudo-portfolio, whose composition by rating and maturity is
similar to that of the credit portfolio but whose average recovery rate differs.
This approach heavily relies on Eq. (10), where a unique coefficient π is as-
sumed and where the historical values of this coefficient are recovered from the
historical values of the credit index.

The first approach consists in eight steps. The first sixth steps produce a
history of values V P ′

(t) for a pseudo-portfolio P ′ that mimicks the portfolio P
of the investor using on the past values and recovery rates of a market index
I. The last two steps use the pseudo-portfolio to reconstruct the past values
V P (t) of the credit portfolio. Specifically, in the last step of the algorithm, the
effective recovery rates of the portfolio are incorporated in lieu of the recovery
rates of the index. The detailed algorithm is as follows.

In a first step, the monthly returns of several credit sub-indexes are obtained
from a database. For instance, rIκ,m(t) gives the return at time t of the credit
sub-index of rating κ and maturity m. We assume that there are K possible
ratings (excluding the bankruptcy state) and M possible maturity ranges.

In a second step, we obtain the current value of the credit portfolio for each
rating and maturity layer by observing the current quotes of the bonds in the
portfolio. For example, V P

κ,m(0) gives the value at time 0 of the credit sub-
portfolio of rating κ and maturity m. Using this information, we can compute
the weights at time 0 of the sub-portfolios within the total credit portfolio:

wP
κ,m(0) =

V P
κ,m(0)

∑

κ,m

V P
κ,m(0)

.

The next step consists in computing πP (0), which is the risk premium ad-
justment factor at time 0 for the credit portfolio. This quantity is obtained by
solving Eq. (10), where V = V P (0) is the total credit portfolio value.

For the fourth step, we multiply the monthly return (at any time t ≤ 0)
of each sub-index by the weight invested at time 0 in the corresponding sub-
portfolio of identical rating and maturity. This is precisely the “constant posi-
tion” approach, which can be written as follows:

rP (t) =
∑

κ,m

rIκ,m(t) wP
κ,m(0) ∀t ≤ 0,
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where rP is a reconstruction of the past credit portfolio returns.
In a fifth step, we start by computing the average recovery rate RI of the

index and we assume this quantity is constant. The computation is performed
using for instance:

RI =
1

KM

∑

κ,m

RI
κ,m,

but alternative averaging methods are possible. Then, we compute the initial
value V

′P (0) of the pseudo-portfolio using Eq. (10). This evaluation is con-
ducted using the average recovery rate RI of the index instead of the recovery
rates RP

κ,m of the credit portfolio. In this evaluation, we also use the value πP (0)
computed above.

The sixth step consists in starting from the value V
′P (0) and in extrapolating

to other values V
′P (t) by discounting with the values of rP . We have:

V
′P (t) =

V
′P (0)

∏

ti

(1 + rP (ti))
,

where the historical values that are computed are for the credit pseudo-portfolio,
so for a credit portfolio whose recovery rate is that of the index (but all other
determinants are kept unchanged).

In the penultimate step, we use the pseudo-portfolio to compute the histor-
ical values πP (t). The past values of the risk premium adjustment factor are
the solutions to Eq. (10) when the recovery rate is RI and the values V

′P (t)
are retained.

Finally, in the last step, we obtain the historical values V P (t) of the credit
portfolio using Eq. (10) with the recovery rates RP

κ,m of every subclass of the

portfolio and with the risk premium adjustment factor πP (t).

2.2 Second Approach

The second approach keeps the assumption of a unique factor π but extends
the first approach by distinguishing assets with a recovery rate of 100% from
other assets. The necessity to operate this distinction comes from the empirical
observation that some defaults do not induce costs or induce minor costs. This
is the case when a company with valuable tangible assets defaults because of
a lack of cash in the short run. Indeed, after such a default (administered
under the Chapter 11 of the US bankruptcy code, or under similar codes in
other countries), the company can start afresh and bondholders can ultimately
recover the nominal value of their bonds. In the second approach, we distinguish
such companies from other companies who incur substantial losses in case of a
default.

Most of the algorithm that computes the past values V P (t) of the credit
portfolio is unchanged: only the second and last steps of the algorithm need to
be modified in order to go from approach 1 to approach 2.

In the new second step of the algorithm, we compute from public data the
market value at time 0 of the bonds whose recovery rate is different from 100%
and whose rating and maturity are κ and m, respectively. The value of these
bonds is denoted Ṽ P

κ,m(0), by class of rating and maturity. It is also possible to
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compute the weight of each class as follows:

w̃P
κ,m(0) =

Ṽ P
κ,m(0)

∑

κ,m

Ṽ P
κ,m(0)

.

Further, the value of the bonds that have a full recovery rate is computed
as an aggregate over all ratings and maturities; it is denoted V̂ P (0).

The next steps of the algorithm are unchanged and yield a value Ṽ
′P (0)

for the credit pseudo-portfolio. This value is computed from Eq. (10), where
the average recovery rate RI of the index is used. As in the first version of the
algorithm, the historical values Ṽ

′P (t) of the pseudo-portfolio are then deduced.
The historical values πP (t) are also computed as in the first algorithm, based
on the values Ṽ

′P (t).
In the modified last step of the algorithm, we first compute the historical

values of the portfolio of bonds with partial recovery, namely Ṽ P (t). Then, for
the bonds with full recovery, and because we have canceled risk-free rate effects,
we write:

∀t V̂ P (t) = V̂ P (0).

Next, the aggregate historical value of the credit portfolio is estimated as follows:

V P (t) = Ṽ P (t) + V̂ P (t).

2.3 Third Approach

The third approach extends the first one by considering a distinct risk premium
adjustment factor for each rating class. Nearly all the steps of the algorithm of
approach 3 are identical to the steps of approach 1 and use Eq. (10). Only step
7 differs: it now solves the system (5) for determining π1,...,k. Note from Eq.
(4) that the value of each subportfolio k depends on all the values π1,...,k.

2.4 Illustration

Let us now compare the three approaches introduced in this section. For this
illustration, we constitute a portfolio P comprised of 16 iso-weighted layers of
corporate bonds. All bonds pertain to the investment grade class. Four bonds
have been selected in each of the four investment grade ratings. See Table 6 in
the appendix for the full dataset.

In Figure 1, we show the reconstructed bond portfolio historical values for
each of the three approaches. Interestingly, approach 2 reconstructs historical
data that is very close to the data reconstructed by approach 3 (which is by
construction the most accurate of the three approaches). Therefore, separating
bonds with a full recovery from other types of bonds can be sufficient to reach
sufficient pricing reliability without having to postulate several values of π.
Finally note that approach 1 severely underprices bond portfolios. The next
section studies the estimation of stochastic models to the data reconstructed
here.

12
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Figure 1 – Credit Portfolio History, Approaches 1, 2, and 3

3 Dynamic Credit Portfolios

First, we propose a model for representing the dynamics of the credit portfolio
V . Then, we estimate the parameters of this model and we provide several
validation methods for this estimation.

3.1 Model

We first address the following question: should V be modeled using Cox-
Ingersoll-Ross dynamics? We show in Figure 2 the autocorrelations of the daily
returns and squared returns of the credit portfolio. For computing these graphs,
we use the historical values of V computed in the previous section using the third
approach. The autocorrelations shown in the figure are important even after
several days. We deduce from this observation that a good model for represent-
ing the dynamics of daily movements of V should incorporate some dependence
of increments. Therefore a CIR process could be an appropriate candidate for
this purpose.

However, the knowledge of the daily dynamics of V is not required for the
applications considered in this article. Indeed, we need to work over longer hori-
zons because we are computing Solvency Capital Requirements on an annual
basis. Let us examine how the dynamics change when we increase the time hori-
zon. We now show in Figure 3 the autocorrelations of the monthly returns and
squared returns of the credit portfolio (using again the historical data recon-
structed with the third approach of the previous section). From these graphs, it
appears that the autocorrelations quickly remain within the confidence bars of
the no autocorrelation hypothesis. This means that the dynamics of V present
little or no autocorrelation at a sufficiently low frequency. Therefore, an ap-
propriate continuous-time process used for modeling these dynamics does not
necessarily need to incorporate mean-reversion.

Based on the previous analysis, we model the dynamics of V using a pro-
cess with independent increments. The marginal distributions of this process

13
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Figure 2 – Autocorrelations of Daily Returns and Squared Returns of V
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Figure 3 – Autocorrelations of Monthly Returns and Squared Returns of V
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are specified as a mixed GPD-empirical distribution. The justifications for con-
structing such a model are as follows. Because we have enough data for small
and medium size fluctuations, we choose to keep the empirical distribution in
this range of fluctuations. However, we do not have enough large empirical
points to construct a viable distribution in the tail. We model the extreme
value part of the distribution with a Generalized Pareto Distribution (GPD).
When applied to positive extreme values, this latter distribution can be written
as follows:

Gu,ξ,σ(x) = 1−

(

1 +
ξ

σ
(x− u)

)− 1

ξ

(11)

for all x ≥ u and assuming ξ 6= 0.
A similar expression is available for negative extreme values. Also note that

the probability density function is

gu,ξ,σ(x) =
1

σ

(

1 +
ξ

σ
(x− u)

)− 1

ξ
−1

for all x > u.

3.2 Estimation

We model V using the Generalized Pareto Distribution and develop a method
that complements the approach shown in Le Courtois and Walter (2014). This
method integrates in a general scheme the contributions of Hill (1975) and
Hosking and Wallis (1987). However, these contributions are not used in a
classic way. Before presenting the general scheme, we recall the approaches of
Hill and Hosking and Wallis.

The Hill method is traditionally used for the estimation of a strictly positive
shape parameter (ξ > 0). Starting from a sample xi, i = 1, · · · , n of independent
identically distributed observations of identical sign, ranked observations are
constructed. Specifically, xk,n is the k-th observation in decreasing order. The
Hill method then consists in representing graphically the values of

α̂k,n =





1

k

k
∑

j=1

lnxj,n − lnxk,n





−1

with respect to k where k = 1, · · · , n. The coefficients α̂k,n describe the mean
behavior of exceedances beyond the thresholds xk,n. Under the GPD assump-
tion, α̂k,n → 1/ξ when n→ +∞, k = k(n) → +∞, and k/n→ 0.

Hosking and Wallis have shown that using moments can be more efficient
for the estimation of β and ξ than using other methods such as the maximum
likelihood one. They provide the following estimators:

ξ̂ = 2−
w0

w0 − 2 w1

and

β̂ =
2 w0 w1

w0 − 2 w1
,

with
w0 = E (X)
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and
w1 = E (X(1−G(X))) ,

where X is a GPD random variable of distribution function G.
Our algorithm uses the Hill method as a tool for obtaining the threshold u

instead of the coefficient ξ. The Hosking and Wallis method is used both in an
intermediate step of the algorithm and in the final step for the computation of
ξ and σ. The algorithm can be described as follows.

In a first step, we construct candidate thresholds that depend on an arbitrary
level of precision h:

û(i) = xn,n + i h,

where

0 ≤ i ≤
x1,n − xn,n

h
.

In a second step, we compute the estimators σ̂(û(i)) and ξ̂(û(i)) for the
generalized Pareto distributions associated with the thresholds û(i) and using
the method of Hosking and Wallis (1987).

In the next step, we construct translated ordered observations:

x̃k,n = xk,n − û(i) +
σ̂(û(i))

ξ̂(û(i))
,

to recover simple Pareto-like distributions for which Hill coefficients are known
to be more stable.

In a fourth step, we compute the Hill coefficients for the values of k for which
xk,n > û(i). So, for i given, we compute:

α̂i,k,n =





1

k

k
∑

j=1

ln x̃j,n − ln x̃k,n





−1

,

for all k such that 1 ≤ k ≤ m(i) where m(i) is the first integer satisfying
xm(i)+1,n ≤ û(i). This step is illustrated in Figure 4 that represents the Hill
coefficient as a function of k for both the negative and positive extremes of
the historical bond portfolio data reconstructed using the third approach of the
previous section.

Then, for each i, we compute a coefficient of dispersion Si measuring the
stability of the Hill plot comprised of the points (k, α̂i,k,n). This coefficient is
defined as follows:

Si =
1

m(i) ξ̂(û(i))

m(i)
∑

j=1

∣

∣

∣

∣

∣

∣

α̂i,j,n −
1

m(i)

m(i)
∑

k=1

α̂i,k,n

∣

∣

∣

∣

∣

∣

.

In a sixth step, the optimal threshold is computed as û(iopt) = rn,n + iopt h
where iopt is the integer that minimizes the coefficient of dispersion:

Siopt
= inf

(

Si| 0 ≤ i ≤
x1,n − xn,n

h

)

.

The final step consists in extracting the Hosking and Wallis estimators
σ̂(û(iopt)) and ξ̂(û(iopt)).
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Figure 4 – Hill graphs for negative and positive extremes.

ûn σ̂n ξ̂n ûp σ̂p ξ̂p

Approach 1 0.00319 0.00132 0.61115 0.00411 0.00126 0.48838
Approach 2 0.00016 0.00134 0.49649 0.00561 0.00214 0.45648
Approach 3 0.00013 0.00129 0.48936 0.00483 0.00176 0.46078

Table 1 – GPD parameters.
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To conclude, we apply this algorithm to estimate the GPD parameters of
our database of historical bond portfolio values constructed using approaches 1,
2, or 3. We estimate the parameters ûn, σ̂n and ξ̂n for the negative extremes
and ûp, σ̂p and ξ̂p for the positive extremes. The results are shown in Table 1.

3.3 Validation

We use four methods to confirm the validity of the parameters estimated in the
previous section.

Maximum likelihood

Assuming the thresholds ûn and ûp are as obtained in Table 1, we compute the
maximum likelihood estimates σ̂n, ξ̂n, σ̂p, and ξ̂p. To do so, we maximize the
log-likelihood function of ξ and σ:

ln(L) =
n
∑

i=1

ln (gu,ξ,σ(xi)) = −n ln(σ)−

(

1

ξ
+ 1

) n
∑

i=1

ln

(

1 +
ξ

σ
(xi − u)

)

for both negative and positive extremes.

σ̂n ξ̂n σ̂p ξ̂p

Approach 1 0.00121 0.84394 0.00136 0.55780
Approach 2 0.00129 0.58651 0.00296 0.28084
Approach 3 0.00126 0.56271 0.00215 0.39885

Table 2 – Maximum likelihood estimates.

While the maximum likelihood and the extended Hill estimates classically
do not coincide, the results of this experiment, shown in Table 2, can be used
to confirm the order of magnitude of the estimates σ̂n, ξ̂n, σ̂p, and ξ̂p shown in
Table 1.

Lorenz curves and Gini coefficients

We construct Lorenz curves as follows. We rank excess returns beyond u in
decreasing order. The abscissa of the curves represents the proportions of such
observations. The coordinate represents the accumulation of excess returns (the
sum of all excess returns is normalized to 1 for convenience).

Figure 5 shows the Lorenz curves graphed for both the negative and posi-
tive excess returns of the historical bond portfolio data reconstructed using the
third approach of the previous section. The plain lines represent the Lorenz
curves obtained for the GPD model with the set of parameters previously es-
timated. The dotted lines represent the curves obtained with the empirical
excess returns. The plain and dotted curves nearly coincide, confirming both
the appropriateness of the GPD approach and of its parameters.

While Lorenz curves provide a visual confirmation or negation of a model, it
is possible to construct from these curves a quantitative index. This is the Gini
coefficient which measures the ratio of the surface between the curve and the
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Figure 5 – Lorenz curves.

Gn
t Gn

e Gp
t Gp

e

Approach 1 72% 66% 66% 58%
Approach 2 67% 65% 65% 53%
Approach 3 66% 65% 65% 56%

Table 3 – Gini coefficients.
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straight line to the surface of the half square. Table 3 gives the Gini coefficients
associated with the historical bond data reconstructed using approaches 1, 2,
and 3 of the previous section. In this table, Gn

e is the Gini coefficient for the
empirical (‘e’) negative (‘n’) extremes, Gp

t is the Gini coefficient for the GPD
theoretical (‘t’) positive (‘p’) extremes, and so on. We see that the greater level
of validation of the GPD fit is achieved for the negative extremes that stem from
approaches 2 and 3. These are the situations that matter most in practice.

POT graphs

The Peak Over Threshold, or POT, method is traditionally used to estimate u
based on graphs representing the average empirical excess returns as a function
of the threshold. POT graphs can also be used to confirm the validity of the
GPD approach, and we use them for this purpose. If the GPD approach is valid,
these graphs should represent points oscillating around a straight line. This is
what is approximately observed in the POT graphs of Figure 6 that use the
data reconstructed with the third approach of the previous section. This result
confirms the validity of retaining a GPD approach. Note, though, that these
graphs cannot be used for confirming our parameter estimates.
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Figure 6 – POT graphs.

Kolmogorov-Smirnov test

Finally, we perform a Kolmogorov-Smirnov test. This test computes the max-
imum distance between a theoretical distribution function (here the GPD one)
and the empirical distribution function. So, we compute

θ = max

(

max

(

i

n
− GPD(xi)

)

,max

(

GPD(xi)−
i− 1

n

))

,

where the xi’s are the empirical observations.
Table 4 gives the estimations of θ for both positive and negative extremes,

the critical thresholds θc, and the p-values (all of them computed for a confidence
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θn θnc p-valuen θp θpc p-valuep

Approach 1 0.11 0.29 0.96 0.20 0.34 0.52
Approach 2 0.07 0.14 0.79 0.21 0.39 0.65
Approach 3 0.07 0.14 0.80 0.17 0.35 0.74

Table 4 – Kolmogorov-Smirnov statistics and p-values.

level of 95%). The statistics are always inferior to the critical values and the
p-values are always quite large in the table. From this test, we conclude that we
cannot exclude the assumption that the GPD model is the right one. This is an
additional confirmation that we can use the GPD for fitting bond data extreme
values.

4 Solvency Capital Requirements

We can now compute the credit Solvency Capital Requirements associated with
the portfolio of bonds shown in Table 6. A credit SCR measures the downward
effect on the Net Asset Value of a credit scenario. This scenario should be
the fiftieth worst one out of ten thousand scenarios: the goal is to protect the
insurance company with a probability of 99.5%. For simplicity here, we restrict
ourselves to a study of the impact of credit risk on the assets of the insurance
company. The study of the effect of credit risk on the best estimate value of
liabilities is left to a subsequent paper. Therefore, we adopt in this section the
following simplified definition:

SCR =
A0 −A99.5%

A0
(12)

where A0 is the current value of the assets comprised of defaultable bonds and
A99.5% the value of these bonds in the fiftieth worst catastrophic scenario out of
ten thousand scenarios. We have divided the numerator by A0 for comparability
reasons of the forthcoming results.

Insurers can compute their credit SCRs by either using a model such as
that presented in this paper or by using a standard formula. The standard
formula put forward in the European regulation (see the Commission Delegated
Regulation (2015)) is as follows for a bond of sensitivity S:

SCRStd.Form. = a+ b (S − c) (13)

where the parameters a, b, and c are chosen in the Tables 7, 8, and 9 depending
on the sensitivity and rating of the bond. This SCR, similar to the definition of
an SCR given in Eq. (12), is in fact a relative shock.

We show in Table 5 a comparison of the SCRs associated with the bonds
of Table 6 and obtained using seven different methods. The first column gives
the results obtained with the standard formula. The next columns give the
results obtained with internal models. The second column of Table 5 computes
the credit SCR by sorting the values of the bond portfolio reconstructed using
approach 1, picking the 0.5% quantile, subtracting it from the current portfolio
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Standard Formula 1 1+GPD 2 2+GPD 3 3+GPD

Total Portfolio 5.5% 5.2% 6.1% 6.9% 7.9% 6.7% 7.2%

Sub Portfolio AAA 1.4% 0% 0% 0% 0% 0% 0%

Sub Portfolio AA 3.2% 6.4% 7.1% 11.5% 9.1% 9.1% 8.5%

Sub Portfolio A 6.1% 8.3% 8.9% 10.6% 11.4% 12.5% 10.6%

Sub Portfolio BBB 11.8% 7.1% 9% 8.9% 11.1% 8% 10.4%

Table 5 – Credit SCRs.

value, and renormalizing the difference by the current portfolio value. The
SCRs for the subportfolios are computed as follows: the 0.5% quantile of the
total bond portfolio is selected, a corresponding value of Π is deduced, and then
the critical subportfolio value is computed using this value of Π. The third
column of the table operates similarly on the data of approach 1 smoothed by
the Generalized Pareto Distribution. Columns 4 to 7 are computed in a similar
way as columns 2 and 3 but for approaches 2 and 3.

From Table 5, we make the following observations and interpretations. The
internal models all give smaller SCRs than the standard formula for AAA1 and
BBB bonds. The opposite observation holds for AA and A bonds. This feature
is a consequence of the nature of our database where we have selected completely
risk-free AAA bonds and BBB bonds that have a higher recovery rate than AA
and A bonds. For the total portfolio, we see that all internal models predict
a higher SCR than the standard formula: this is a consequence of how this
portfolio was built; for a portfolio with a higher proportion in the AAA and
BBB bonds selected in our study, the results would be reversed.

From Table 5, we also observe that approaches 2 and 3, which are more accu-
rate than approach 1, are more conservative (with or without GPD smoothing):
they always predict larger SCRs. Then, if we compare approach 1 to approach 1
+GPD, approach 2 to approach 2+GPD, and approach 3 to approach 3+GPD,
we see that it is not possible to conclude on the effect of smoothing: sometimes it
increases and sometimes it decreases SCRs, without the effect being predictable
at this stage.

Conclusion

This paper shows for the first time in the literature all the steps needed to
produce a gross SCR associated with the credit risk of the assets of an insur-
ance company. For most of these steps, new methods are proposed and tested.
In the first section of the paper, new results on risk-premium adjustment fac-
tors are given. In the second section, innovative approaches for benchmarking
credit portfolios are introduced. In the third section, a mixed GPD model for
modeling credit-risky portfolios is introduced, estimated, and validated. In the
fourth section, a case study compares the SCRs obtained using our approach
to those obtained using the standard formula. One of the advantages of the
framework introduced in this paper is that it takes into account the recovery
risk of defaultable bonds, while the Solvency 2 standard formula does not.

A possible extension of our paper would concentrate on the computation of

1For AAA bonds, the models predict a null SCR because the recovery rate is 100% for all
these bonds in our database.
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the net credit SCR, namely of the SCR that also measures the impact of credit
risk on the best estimate value of the insurance liabilities. To perform this com-
putation, each primary simulation of the one-year credit risk should produce
new values and ratings for the defaultable assets and should be supplemented
by secondary simulations. This would allow us to obtain the value of economic
capital - conditional on the primary shock simulated. Note that secondary sim-
ulations are also required in the absence of a primary shock in order to compute
the time-0 value of economic capital. Other extensions of our framework could
be done by introducing for instance stochastic recovery rates or by constructing
a more refined model of rating transitions.
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A

Issuer Rating Recovery Rate Maturity Coupon Dirty Price Sensitivity

BEI AAA Full 11/10/2016 8% 115.49 1.7

FINANCEMENT FONCIER AAA Full 29/12/2021 5.62% 121.62 5.9

KFW AAA Full 21/01/2019 3.875% 119.08 3.7

GERMANY AAA Full 15/08/2023 2% 114.46 8

OAT AA Full 25/10/2019 3.75% 117.96 4.5

PROCTER AA 44% 24/10/2017 5.125% 114.91 2.7

STATOIL AA 40% 10/09/2025 2.875% 117.38 9.3

COMMONWEALTH AA 40% 10/11/2016 4.25% 108.09 1.8

AIRBUS GP FIN. A 55% 12/08/2016 4.625% 108.47 1.6

AIRBUS GROUP FIN. A 55% 25/09/2018 5.5% 120.48 3.4

AIR LIQ.FIN A 56% 15/10/2021 2.125% 110.02 6.3

CREDIT AGRICOLE A 61% 22/12/2024 3% 101.01 8.4

PIRELLI INTER BBB 64% 18/11/2019 1.75% 101.10 4.4

SEB BBB 65% 03/06/2016 4.5% 107.71 1.4

VEOLIA BBB 65% 24/05/2022 5.125% 131.83 6.3

URENCO FINANCE BBB 60% 02/12/2024 2.375% 101.33 8.6

Table 6 – Bond dataset as of 31/12/2014
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Appendix B

Sensitivity range AAA AA A BBB
0-5 0 0 0 0
5-10 4.5% 5.5% 7% 12.5%
10-15 7.2% 8.4% 10.5% 20%
15-20 9.7% 10.9% 13% 25%
20- 12.2% 13.4% 15.5% 30%

Table 7 – Parameter a of the standard formula.

Sensitivity range AAA AA A BBB
0-5 0.9% 1.1% 1.4% 2.5%
5-10 0.5% 0.6% 0.7% 1.5%
10-15 0.5% 0.5% 0.5% 1%
15-20 0.5% 0.5% 0.5% 1%
20- 0.5% 0.5% 0.5% 0.5%

Table 8 – Parameter b of the standard formula.

Sensitivity range AAA-BBB
0-5 0
5-10 5
10-15 10
15-20 15
20- 20

Table 9 – Parameter c of the standard formula.
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